Building Mine Rock Stockpiles to Enhance Operational and Closure Performance

PRESENTED BY
Introduction

- The mining sector worldwide is experiencing significant increases in closure costs.
- The most contentious and persistent issue is poor water quality (ML-ARD/AMD), during operation, closure and post closure.
- ML-ARD/AMD requires collection and treatment during operations and often in perpetuity.
- Range of mine site domains can be affected: waste rock dumps / mine rock stockpiles (MRS/WRD), tailings storage facilities, open cuts, underground voids.
- General breakdown of acid and metal pollution loading sources:
 - 60-80% waste rock (eg. Equity Silver Mine – 94%; Meints & Aziz, 2018)
 - 20-30% tailings
 - <20% other sources
- International Network for Acid Prevention (INAP, 2020) funded study to review, assess and summarise existing and improved MRS/WRD construction methods.
Conventional Mine Rock Stockpile Construction
Gas Transport and Oxygen Resupply Mechanisms in Conventional MRSs

- Oxygen supply to sulfidic mine rock is the key limiting factor for ML-ARD/AMD generation at most sites.
- Temperature differential (internal MRS and ambient) can lead to significant fluctuations in air flow through an MRS on a diurnal and seasonal basis.
- To manage ML-ARD/AMD risk, air flow mechanisms for MRSs should be considered.
Improved Construction Methods

- A total of 6 “improved” construction methods identified for assessment.
 - 4 “geotechnically-focussed” methods.
 - 2 “geochemically-focussed” methods (geochemical engineering).
- Geotechnically-focussed methods:
 - Lower lift heights.
 - Engineered layers.
 - Base-up, layered /compacted.
 - Encapsulation.
- Geochemically-focussed methods:
 - Oxygen consuming materials.
 - Sulfide passivation.
- Additional (evolving) methods also identified in INAP (2020).
Improved Construction Methods

- All methods aim to limit access of oxygen (not water) to sulfidic mine rock by either:
 - Regulating air entry;
 - Influencing pore gas oxygen concentrations; and/or
 - Coating sulfide grains to limit reaction with oxygen.

- All methods require:
 - Comprehensive and accurate geochemical characterisation;
 - ML-ARD/AMD risk classification system;
 - ML-ARD/AMD block model; and
 - Waste rock segregation and/or handling strategies.

- Potential benefits can be quantified based on lowering pollution (acid and metal) loads per tonne of mine rock placed (ie. improving site water quality).
Example: Base-up, Layered / Compacted

- Building an MRS from the base-up via paddock dumping in compacted, thin lifts, simultaneously retards air flow capacity and enhances carbonate and silicate neutralization, thereby improving site water quality.

- Construction method:
 - Base-up construction, even in undulating/steep terrain.
 - Paddock dumping and initial dozer compaction.
 - Final thickness of each flattened layer 1-3 metres.
 - Ongoing compaction to optimise permeability / air entry.
 - Water addition, if required.
 - Surface runoff control.
 - Site-specific field trials.
Example: Base-up, Layered / Compacted

Key benefits:

- Base-up construction avoids preferential pathways for air and water.
- Thin-lift configuration also limits preferential pathways.
- Compaction lowers potential for ML-ARD/AMD generation and discharge.
- Increased residence times enhance carbonate and silicate neutralisation.
- Stringent air entry control with strategic thinner layers (eg. < 1m).
- Water addition (for compaction) can further lower air entry.
- Lower reliance on cover systems.
- Lower risk of spontaneous combustion.
- Can be applied retrospectively to historic MRSs.
- Potential to improve geotechnical stability.
- Lower water treatment costs, improved water quality outcomes.
- Long term post-closure cost savings.

Case Studies

- Numerous sites where improved MRS construction methods are being applied.
- Published references / public domain examples:
 - Iron ore mine, Pilbara WA (lower lift heights + inter-lift layers)
 - Teck Coal Operations, Canada (engineered layers).
 - Golden Cross Mine, NZ (base-up, layered/compacted).
 - Ban Houayxai Gold Mine, Lao PDR (base-up, layered/compacted).
 - Kelian Gold Mine, Indonesia (base-up, layered/compacted).
 - Rosebery base metal mine, Tasmania (O₂ consuming materials + all of above).
 - Martha gold mine, NZ (base-up, layered/compacted).
 - Phu Kham copper-gold mine, Lao PDR (encapsulation + base-up, layered/compacted).
 - Martabe gold mine, Indonesia (TSF embankment encapsulation).
 - Grasberg copper-gold mine, Indonesia (sulfide passivation).
 - Brukunga pyrite mine, SA (sulfide passivation).
Conclusions

- Increasing evidence that ML-ARD/AMD management strategies solely focussed on cover systems and water collection/treatment can result in unrecognized and poorly funded closure liability.

- Improved MRS construction methods have been identified that build on recent industry experience (4 geotechnical; 2 geochemical).

- All improved methods aim to limit availability of oxygen to sulfidic waste rock, and thus reduce pollution generation, and ultimately improve seepage water quality.

- Some of these methods can be applied retrospectively at brownfield sites.

- Geochemical characterisation, classification and block modelling are essential.

- Suitability will be site-specific (climate, topography, texture, geochemistry, etc).

- Methods can be combined to further enhance water quality outcomes as compared to a single method.

- Numerous existing full-scale applications confirm benefits.
Next Steps

- Conduct an assessment to identify which of these improved methods could be applied to lowering pollution from your existing mine rock stockpiles.

- Consider implementing a trial to quantify the water quality / closure benefits of modifying / improving existing problematic mine rock stockpiles.

- Based on your site’s climate, topography, mine rock textures, and geochemistry, identify the optimum construction methods for your next new mine rock stockpile.

- Determine the costs of implementing the improved construction methods for existing or new MRS relative to conventional methods, and compare any increases with predicted costs savings during closure.
Resources

Gilles Tremblay
INAP Technical Manager
gilles.tremblay@inap.com.au
Phone: +1 613 854-7329
www.inap.com.au
www.gardguide.com
www.icard2021.com.au

Dr Jeff Taylor
Senior Principal Environmental Geochemist
jeff.taylor@earthsystems.com.au
Phone: +61-402 158 682
www.acidmetalliferousdrainage.com
www.earthsystemswater.com
www.earthsystems.com.au
www.esanalytical.com

Mike O’Kane, P.Eng.
Senior Technical Advisor
mokane@okc-sk.com
Phone: +1 403 660 4489
www.okc-sk.com
References

